Working memory resolution increases faster than capacity in visuomotor sequence learning

Abigail Noyce & Robert Sekuler Department of Psychology & Volen Center for Complex Systems Brandeis University, Waltham, MA, USA

Extending the study of visual working memory: sequences and learning

• Visual working memory can be modeled with Gaussian + uniform mixtures

(Zhang & Luck, 2008; Bays & Husain, 2008; Bays & Husain, 2009; Gorgoraptis et al., 2011; Bays et al., 2011; Zokaei et al., 2011; Zhang & Luck, 2011)

Memory resolution

Memory capacity

Extending the study of visual working memory: sequences and learning

• Visual working memory can be modeled with Gaussian + uniform mixtures

(Zhang & Luck, 2008; Bays & Husain, 2008; Bays & Husain, 2009; Gorgoraptis et al., 2011; Bays et al., 2011; Zokaei et al., 2011; Zhang & Luck, 2011)

Memory resolution

Memory capacity

- Two new domains of investigation:
 - Serial position effects
 - Effects of increased familiarity

Model sequence

Imitated sequence

Segmentation

Directional error

Studying learning using these sequences

- Participants saw and reproduced each stimulus several times in succession.
- Measured directional error for each segment on each presentation of every trial.

Dataset	Segments in stimulus	Presentations per trial	Number of trials	Number of subjects	Published in
Α	5	4	76	12	Agam et al. (2007)
В	5	4	88	12	Noyce & Sekuler, in prep
С	5	4	88	9	Noyce & Sekuler, in prep
D	6	5	76	12	Agam et al. (2007)
E	6	5	72	8	Maryott, Noyce & Sekuler (2011)
F	6	5	72	11	Maryott, Noyce & Sekuler (2011)

Assessing memory's resolution and capacity

- Created distributions of errors for each participant × segment × repetition.
- Fitted Gaussian + uniform model, recorded two parameters:
 - SD of the Gaussian reflects memory resolution
 - Proportion of trials within the Gaussian component relates to memory capacity

• Assessed serial position dynamics of each parameter.

Memory resolution: 5-segment stimuli

SD of responses (°)

Memory capacity: 5-segment stimuli

P(response drawn from memory)

Memory resolution: 6-segment stimuli

SD of responses (°)

Memory capacity: 6-segment stimuli

P(response drawn from memory)

Serial position dynamics of resolution

- SD has a strong serial position curve that quickly flattens and hits ceiling.
 - There is a limit on how precisely memory representations can be maintained, and that limit is reached quickly for most items.
 - Serial-position-curve flattening mostly derives from SD changes.
 - Serial position dynamics suggest that remembering an already-familiar item requires fewer resources.

Serial position dynamics of capacity

- P(response drawn from memory) shows gradual increase and gradual flattening over repeated exposures.
 - Steady improvement in accuracy derives from increases in P(memory) rather than decreases in SD.
 - With increased familiarity, people can more effectively get stimuli into memory.
 - Chunking?
 - Support from LTM?
- Other source of increased efficiency?

Conclusions

- Serial-position dynamics with learning derive from changes in both **resolution** and **probability-of-memory**.
- More resources are required to encode not-yet-familiar items, reducing the precision of short-term memory.
- Items are more successfully placed into memory as a sequence becomes familiar.

Thank you!

- Thanks to
 - Brandeis Vision Lab
 - Yigal Agam, Henry Galperin, Jessica Maryott

NIH grant MH068404

NIH training grant T32GM084907

Contact: anoyce@brandeis.edu