
Chapter 8  Comparing means #

Adapted by Abigail Noyce from Fundamentals of Quantitative Analysis, James Bartlett and
Wilhelmiina Toivo.

Inferential statistics are tools that let us work from a limited data set to draw conclusions about
the broader population from which those data were sampled. One of the most common families
of tools are those that let us compare multiple sample means (such as those derived from
different groups of subjects, or different experimental conditions). This reading walks through
those common tools, the R code to apply them, and how to interpret the resulting output. For all
of these cases, the predictive (independent) variable is assumed categorical: we are asking
questions about two different groups.

All of these case-specific tools are applications of the general linear model, are a family of tools
to predict one or more continuously-measured outcome variables from one or more predictors
(which can be categorical or continuous).

8.1  Comparing two groups using t-tests

For practice, we’re going to look at data from Lopez et al. (2023).  This paper replicated an
(in)famous experiment that won the Ig-Nobel prize. Participants engaged in a intricate setting
(seriously, go and look at the diagrams in the article) where they ate soup from bowls on a table.
In the control group, participants could eat as much soup as they wanted and could ask for a
top-up from the researchers. In the experimental group, the soup bowls automatically topped up
through a series of hidden tubes under the table. The idea behind the control group is they get
an accurate visual cue by the soup bowl reducing, and the experimental group get an inaccurate
visual cue by the soup bowl seemingly never reducing. So, the inaccurate visual cue would
interfere with natural signs of getting full and lead to people eating more.
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In the original article, participants in the experimental group ate more soup than participants in
the control group, but the main author was involved in a series of research misconduct cases.
Lopez et al. (2023) wanted to see if the result would replicate in an independent study, so they
predicted they would find the same results.

Our research question is thus “Is there a difference in actual calories consumed between the
control and experimental groups?” What are the null hypothesis ($H_0$) and alternative
hypothesis ($H_1$) that correspond to this research question?

8.1.1  Initial exploration and descriptive statistics

Read the data file.

## Rows: 464

## Columns: 9

## $ ParticipantID      <int> 1002, 1004, 1007, 1016, 1018, 1021, 1022, 1024, 102…

## $ Sex                <int> 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, …

## $ Age                <int> 18, 19, 19, 21, 20, 20, 21, 21, 19, 20, 21, 20, 21,…

## $ Ethnicity          <int> 7, 3, 3, 4, 1, 3, 1, 6, 4, 7, 1, 3, 3, 4, 7, 2, 3, …

## $ OzEstimate         <dbl> 3.0, 2.0, 1.0, 3.0, 5.0, 1.0, 1.0, 3.0, 4.0, 1.0, 4…

## $ CalEstimate        <dbl> 65, 10, 20, 25, 50, 5, 20, 180, 470, 50, 130, 100, …

## $ M_postsoup         <dbl> 3.3, 3.1, 43.4, 5.5, 6.0, 0.8, 3.8, 4.5, 7.9, 8.1, …

## $ F_CaloriesConsumed <dbl> 73.19441, 68.75839, 962.61743, 121.99069, 133.08075…

## $ Condition          <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …

Tidy up a few things to make the data easier to interpret, and compute some descriptives for our
final report.
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datafile <- here("datasets/lopez/Lopez_2023.csv")

lopez_data <- read.csv(datafile)

glimpse(lopez_data)



Visualize differences between groups using something like a boxplot. Violin-boxplots, as shown
here are more polished looking.

lopez_clean <- lopez_data %>%

  mutate(Condition = as.factor(Condition),

         Condition_label = case_match(Condition,

                                      "0" ~ "Control",

                                      "1" ~ "Experimental"))

lopez_descriptives <- lopez_clean %>% 

  group_by(Condition_label) %>%

  summarize(mean_calories = mean(F_CaloriesConsumed),

            sd_calories = sd(F_CaloriesConsumed),

            n = n())

# call ggplot, specify data, set x, y, and fillcolor axes

ggplot(data = lopez_clean, aes(x=Condition_label, y=F_CaloriesConsumed, fill=Condit

  # add violin and boxplots

  geom_violin() + 

  geom_boxplot(width=0.2) + 

  # specify colors and axis labels; drop the color legend since it's redundant with

  scale_fill_viridis_d(option = "E", 

                       alpha = 0.6) +

  scale_x_discrete(name="Study Condition") + 

  scale_y_continuous(name="Calories Consumed") +

  guides(fill="none") +

  # specify a theme

  theme_bw()



The mean of the Experimental group is indeed higher than the mean of the Control group, but
there’s a lot of overlap in their distributions.

8.1.2  Using  t.test()  to assess the difference between
groups

In a t-test, we express the difference in some outcome between two groups using a kind of
standardized mean difference. That is, we take the difference between the two groups and divide
by the standard error of the difference. The “classical” version of the t-test is Student’s t-test,
which assumes the variance is approximately equal in each group, and is easier to compute by
hand. In this day and age when we have software doing this, you almost always will want
Welch’s t-test, which allows the groups to have different variances, and adjusts the degrees of
freedom accordingly. By default,  t.test()  uses the Welch’s test.

The function  t.test()  requires two inputs:



A formula where you specify the outcome/dependent variable and the predictor/independent
variable in the form  outcome ~ predictor .

The data you want to use.

Conducting a Welch’s t-test then looks like this:

## 

##  Welch Two Sample t-test

## 

## data:  F_CaloriesConsumed by Condition_label

## t = -4.8578, df = 453.45, p-value = 1.638e-06

## alternative hypothesis: true difference in means between group Control and group

## 95 percent confidence interval:

##  -88.55610 -37.54289

## sample estimates:

##      mean in group Control mean in group Experimental 

##                   196.6818                   259.7313

8.1.3  Interpreting the output

This output gives the three key concepts of inferential statistics.

8.1.3.1  Estimating effect sizes

The  sample estimates  line at the bottom of the output gives the mean for each group, which
is our best estimate of the population means . The mean calories consumed by the control
group is 196.68 calories; the mean consumed by the Experimental group is 259.73 calories.

Somewhat annoyingly, we do not directly get the mean difference between groups as a
raw/unstandardised mean difference. We must manually calculate it by subtracting the means of
each group (196.6818 - 259.7313 = -63.05). So, those in the experimental group ate on average

t.test(formula = F_CaloriesConsumed ~ Condition_label,

       data = lopez_clean)

μ̂



63 more calories of soup than the control group, and this is our best estimate of the population
mean difference between eating soup in these two conditions.

8.1.3.2  Confidence interval

 t.test()  gives the 95% confidence interval for the true difference between the group means:
[-88.56, -37.54]. (Because the  does not include zero, we know that this result is statistically
significant at the  level.)

8.1.3.3  Hypothesis testing

What does  p-value = 1.638e-06  mean? Remember R reports very small or very large
numbers using scientific notation to save space. We normally report p-values to three decimals,
so we report anything smaller as p < .001 to say it is smaller than this.

If you want to see the real number, you can use the following function:

## [1] "0.000001638"

Regardless, this  value is comfortable below , so we can say the result is statistically
significant, and would report it as .

8.1.3.4  Statistical values

The top lines of the output give the t value and the degrees of freedom (df). A few notes:

The t value and the confidence interval are both negative in the statistical output, but what
matters is the absolute value. If we had set our conditions up the other way, with
Experimental first and then Control, we would get positive numbers. What’s important is to
make sure that whichever way you write about your results (Experimental is larger than
control, or Control is smaller than Experimental) aligns with the sign of the numbers you
report (the difference is positive, or the difference is negative).

The df is not , but has been adjusted to account for the differing variances
between the two groups.

CI95

α = .05

format(1.638e-06, scientific = FALSE)

p α = .05

p < .001

Nobservations − 2



8.1.4  Reporting results

Here’s one way you could do it.

8.1.5  One-sample and paired tests

In the example above, we compared means from two different groups. However, you may often
want to compare a single group against a fixed value. Here, we filter only the Experimental
participants from the Lopez data, and ask whether their calories consumed are significantly
different from a theorized mean value of 200.

Participants in the Experimental group ate more soup (198.68 calories, sd = 138.33 calories)
than participants in the Control group (259.73 calories, sd = 140.59 calories). This difference
was statistically significant (Welch’s t(453.45) = 4.86, p < .001); on average, Experimental
participants ate on average 63.05 (95% CI = [37.54, 88.56]) more calories than Control
participants.

lopez_experimental <- lopez_clean %>% 

  filter(Condition == 1) %>%

  droplevels()

# specify the variable to use using the $ operator

t.test(x=lopez_experimental$F_CaloriesConsumed,

       mu = 200)



## 

##  One Sample t-test

## 

## data:  lopez_experimental$F_CaloriesConsumed

## t = 6.2729, df = 217, p-value = 1.894e-09

## alternative hypothesis: true mean is not equal to 200

## 95 percent confidence interval:

##  240.9636 278.4990

## sample estimates:

## mean of x 

##  259.7313

Other times, we might want to compare two measurements taken under different conditions but
from the same participants. In the Lopez data, each participant estimated their soup calories
consumed, and we can ask whether that estimate is different from the actual calories consumed.

Our data are already in wide format, with the two measurements in the same row but different
columns; if your data are in long format, you will first need to wrangle the data into the correct
shape using  pivot_wider() .

# specify both data vectors explicitly

t.test(x = lopez_clean$F_CaloriesConsumed,

       y = lopez_clean$CalEstimate,

       paired = TRUE)



## 

##  Paired t-test

## 

## data:  lopez_clean$F_CaloriesConsumed and lopez_clean$CalEstimate

## t = 14.589, df = 460, p-value < 2.2e-16

## alternative hypothesis: true mean difference is not equal to 0

## 95 percent confidence interval:

##   88.18327 115.63870

## sample estimates:

## mean difference 

##         101.911

8.2  Comparing three or more groups using one-way
ANOVA

To practice, we’re going to use data from experiment 2 of James et al (2015).  They were
interested in whether you can reduce intrusive memories associated with a traumatic event.
Participants watched a video designed to be traumatic, and then were randomly allocated to one
of four groups that engaged in different followup activities:

1. Control
2. Reactivation + Tetris
3. Tetris only
4. Reactivation only

They measured the number of intrusive memories prior to the start of the study, then participants
kept a diary to record intrusive memories about the film in the 7 days after watching it. The
authors were interested in whether the combination of reactivation and playing Tetris would lead
to the largest reduction in intrusive memories. We will recreate their analyses using a one-way
ANOVA.
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8.2.1  Initial exploration and descriptive statistics

Read in the data; add a participant ID variable; convert Condition to a factor; rename the variable
with count of intrusive memories; select only the variables we need for our analysis.

## Rows: 72

## Columns: 3

## $ participant_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …

## $ Condition      <fct> Control, Control, Control, Control, Control, Control, C…

## $ Intrusions     <int> 4, 3, 6, 2, 3, 4, 0, 4, 2, 11, 16, 12, 2, 7, 7, 6, 2, 1…

Next, we want to calculate some descriptive statistics to see some overall trends in the data.
We’ll want these grouped by Condition, so we can see them for each experimental group.

datafile <- here("datasets/james/James_2015.csv")

james_data <- read.csv(datafile)

james_clean <- james_data %>%

  mutate(participant_id = row_number(),

         Condition = as.factor(Condition),

         Condition = fct_recode(Condition,        # Rename Condition levels using "

                                "Control"               = "1",

                                "Reactivation + Tetris" = "2",

                                "Tetris only"           = "3",

                                "Reactivation only"     = "4"),

         Intrusions = Days_One_to_Seven_Image_Based_Intrusions_in_Intrusion_Diary) 

  select(participant_id,

         Condition,

         Intrusions)

  

glimpse(james_clean)



## # A tibble: 4 × 5

##   Condition             mean_intrusions sd_intrusions se_intrusions     n

##   <fct>                           <dbl>         <dbl>         <dbl> <int>

## 1 Control                          5.11          4.23         0.996    18

## 2 Reactivation + Tetris            1.89          1.75         0.411    18

## 3 Tetris only                      3.89          2.89         0.681    18

## 4 Reactivation only                4.83          3.33         0.785    18

Visualize the data.

james_descriptives <- james_clean %>%

  group_by(Condition) %>%

  summarize(mean_intrusions = mean(Intrusions),

            sd_intrusions = sd(Intrusions),

            se_intrusions = sd(Intrusions)/sqrt(n()),

            n = n())

james_descriptives

ggplot(data = james_clean, (aes(x = Condition, y = Intrusions, fill = Condition))) 

  geom_violin() +

  geom_boxplot(width = 0.2) +

  # make things look nice

  scale_fill_viridis_d(option = "E", 

                       alpha = 0.6) +

  guides(fill="none") +

  theme_bw()



8.2.2  Using  aov_ez()  to compare groups

We can run the one-way ANOVA using  aov_ez()  (from the  afex  package), and save it to the
object  mod .



## Contrasts set to contr.sum for the following variables: Condition

## Warning: The column names num.Df, den.Df, MSE, and ges in

## ANOVA output were not recognized or transformed.

## # A tibble: 1 × 7

##   term      num.Df den.Df   MSE statistic   ges p.value

##   <chr>      <dbl>  <dbl> <dbl>     <dbl> <dbl>   <dbl>

## 1 Condition      3     68  10.1      3.79 0.143  0.0141

Note:  aov_ez()  may produce some messages that look like errors, do not worry about these,
they are just letting you know what it’s done.

mod <- aov_ez(data = james_clean,

              

              # specify columns

              id = "participant_id", # column containing subject IDs

              dv = "Intrusions",     # column containing outcome measurements

              between = "Condition", # column containing between-subjects predictor

              

              # specify details of how to run the test

              es = "pes",            # set the effect size to partial eta squared

              type = 3,              # this affects how the sum of squares is calcu

              include_AOV = TRUE

              )

# pipe the output to tidy() for readability

mod$anova_table %>% tidy()



8.2.3  Interpreting the output

In an ANOVA, the initial output only tells you the results of the hypothesis test. The null
hypothesis ( ) is “All the groups have the same mean value.” What is the alternative hypothesis
( )?

8.2.3.1  Hypothesis testing

The p-value is 0.014, so we can say that this result is statistically significant.

8.2.3.2  Statistical values

For the predictor variable  Condition , this output gives the numerator degrees of freedom (3),
the denominator degrees of freedom (68), and the F value (3.79). It also gives the mean square
error associated with this predictor (10.08), and the proportion of variance explained by this
predictor (0.14).

8.2.4  Checking assumptions

As our statistical models become more sophisticated, it becomes more important to check that
the requirements are true. For one-way between-subjects ANOVA, we need two design features:

1. DV that is interval or ratio (yes, because our DV is a count of events).
2. Observations that are independent (yes, each observation comes from a different

participant).

We also need to check two characteristics of the data’s distribution:

3. The residuals (the leftover variance after the model’s best guess) should be normally
distributed.

4. There should be homogeneity of variance among the groups.

 aov_ez()  made diagnostic plots that can be used to check these.

8.2.4.1  Normality of residuals

A quantile-quantile (qq) plot of the residuals tells us how close they fall to a true normal
distribution. (  check_normality()  comes from the  performance  package.)

H0

H1



## For confidence bands, please install `qqplotr`.

Hm. The assumption of normality might not be ideal. Is this a problem? If the sample sizes for
each group are equal, then ANOVA is robust to violations of both normality and of homogeneity
of variance.  We can refer back to our descriptives to check how many participants are in each
condition.

## [1] 18 18 18 18

# to extract a qq plot from aov_ez() output

plot(check_normality(mod))
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Thankfully, the sample sizes are equal, so we should be OK to proceed with the ANOVA. It is not
clear whether normality was checked in the original paper.

8.2.4.2  Homogeneity of variance

We can plot mean-centered violin plots of each condition to see how similar their variance is.

Again, there is some inconsistency in the variance (and looking at our initial visualization, we can
see that this is in part that the Reactivation + Tetris group has a strong floor effect at Intrusions =
0).

James et al. (2015) suspect there might be issues with this assumption as they mention that the
ANOVAs do not assume equal variance, however, the results of the ANOVA that are reported are
identical to our results above where no correction has been made (although their post-hoc tests
are Welch t-tests, which account for unequal variance).

plot(check_homogeneity(mod))



8.2.4.3  What is the point of assumption testing if we’re just going to
ignore it?

While all of this might seem very confusing, we are showing you this for three reasons.

1. To reassure you that sometimes the data can fail to meet the assumptions and it is still ok to
use the test. To put this in statistical terms, many tests are robust to mild deviations of
normality and unequal variance, particularly with equal sample sizes.

2. As a critical thinking point, to remind you that just because a piece of research has been
published does not mean it is perfect and you should always evaluate whether the methods
used are appropriate.

3. To reinforce the importance of pre-registration where these decisions could be made in
advance, and/or open data and code so that analyses can be reproduced exactly to avoid
any ambiguity about exactly what was done. In this example, given the equal sample sizes
and the difference in variance between the groups isn’t too extreme, it looks like it is still
appropriate to use an ANOVA but the decisions and justification for those decisions could
have been more transparent.

8.2.5  Post-hoc testing

The ANOVA results above tell us that there is some difference among the four conditions, but not
exactly which conditions are significantly different from one another. We need to explicitly test
pairs of conditions to understand this. You could step through using  t.test()  for each pair of
conditions, but a quicker and better way is to use  emmeans()  which computes all possible
pairwise comparison t-tests and applies a multiple-comparisons correction to the p-values.

mod_pairwise <- emmeans(mod,

                        pairwise ~ "Condition",

                        adjust = "bonferroni")

mod_pairwise$contrasts



##  contrast                                    estimate   SE df t.ratio p.value

##  Control - (Reactivation + Tetris)              3.222 1.06 68   3.044  0.0199

##  Control - Tetris only                          1.222 1.06 68   1.155  1.0000

##  Control - Reactivation only                    0.278 1.06 68   0.262  1.0000

##  (Reactivation + Tetris) - Tetris only         -2.000 1.06 68  -1.889  0.3787

##  (Reactivation + Tetris) - Reactivation only   -2.944 1.06 68  -2.781  0.0420

##  Tetris only - Reactivation only               -0.944 1.06 68  -0.892  1.0000

## 

## P value adjustment: bonferroni method for 6 tests

This output shows the estimated mean difference between each pair of conditions, the standard
error of the estimate (identical across all pairs, because it’s a characteristic of the model), the

modeled degrees of freedom, t-statistic, and resulting adjusted p-value.

Which pairs of conditions are significantly different from one another after adjusting for multiple
comparisons? Why is that adjustment important?

8.2.6  Reporting results

Because there are 4 conditions, I probably would not report descriptives for each level directly in
the text, but would refer readers to the figure. (I’ve also used negative values for both post-hoc t-
tests, because I’m describing one condition being lower than another.)



Figure 8.1: Violin plots showing the number of intrusive memories by participants in each
experimental condition. Intrusive memories were most frequent for the Control group, and least
frequent for the Reactivation + Tetris group.
I might write:

Although intrusive memories were reported by participants in all groups (Figure 8.1), the
number of intrusions was significantly different across experimental conditions (F(3,68) =
3.79, p = .014, partial  = .14). Post-hoc t-tests using Bonferroni correction for six
comparisons revealed that the Reactivation + Tetris group had significantly fewer intrusions
than either the Control group (t(68) = -3.04, adjusted p = .020) or the Reactivation only
group (t(68) = -2.78, adjusted p = .042). No other condition differences were significant.

η2



8.3  Comparing means in factorial designs using
factorial ANOVA.

Previously, we saw how to conduct and interpret a one-way ANOVA in R. These are flexible
models where you have one independent variable (IV) with three or more levels. They get you a
long way but sometimes your research question and design calls for multiple IVs or factors.

In this section, we extend the ANOVA framework to include two or more IVs/factors and their
interaction. We will show you how to run a factorial ANOVA using the afex package and break

down interactions through post-hoc tests using the emmeans package. Visualising your data is
particularly important for understanding interactions, so we put a lot of emphasis on data
visualisation through violin-boxplots and interaction plots.

We will use open data from Zhang et al. (2014).  These researchers were interested in whether
people could predict how interested they would be in rediscovering past experiences. They call it
a “time capsule” effect, where people store photos or messages to remind themselves of past
events in the future. They predicted participants in the ordinary group would underestimate their
future feelings (i.e., there would be a bigger difference between time 1 and time 2 measures)
compared to participants in the extraordinary group.

We can describe this experiment as a 2 x 2 mixed design. The first IV is time (time 1, time 2) and
is within-subjects. The second IV is type of event (ordinary, extraordinary) and is between-
subjects. Our DV is the rated interest, enjoyment, and meaningfulness (combined into one
composite variable) that participants predicted (at time 1) and experienced (at time 2).

A design and analysis like this lets us ask three different research questions at the same time.

1. Does interest differ between time 1 and time 2? (Is there a main effect of time?)
2. Does interest differ between ordinary and extraordinary events? (Is there a main effect of

type of event?)
3. Is the change in interest from time 1 to time 2 different for ordinary events than for

extraordinary events? (Is there an interaction between time and type of event?)
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8.3.1  Initial exploration and descriptives

Read in the data; select and rename key variables; add participant ID; recode type of event.
Pivot to long format for  aov_ez() .

datafile <- here("datasets/zhang/Zhang_2014.csv")

zhang_data <- read.csv(datafile)

zhang_wide <- zhang_data %>%

  

  select(

    Condition,

    time1_interest = T1_Predicted_Interest_Composite,

    time2_interest = T2_Actual_Interest_Composite) %>%

  

  rename(condition = Condition) %>%

  

  mutate(

    participant_id = row_number(),

    condition = as.factor(case_match(condition,

                           1 ~ "Ordinary",

                           2 ~ "Extraordinary")))

zhang_long <- pivot_longer(zhang_wide,

                            cols=c(time1_interest,time2_interest),

                            names_to = "time",

                            values_to = "interest") %>%

  

  mutate(time = as.factor(time),

         time = fct_recode(time,

             "time1" = "time1_interest",

             "time2" = "time2_interest"))



Before we start on the inferential statistics, one key part of understanding your data and
reporting for context in a report is calculating descriptive statistics like the mean and standard
deviation.

## `summarise()` has grouped output by 'time'. You can

## override using the `.groups` argument.

## # A tibble: 4 × 5

## # Groups:   time [2]

##   time  condition     mean_interest sd_interest     n

##   <fct> <fct>                 <dbl>       <dbl> <int>

## 1 time1 Extraordinary          4.36        1.13    66

## 2 time1 Ordinary               4.04        1.09    64

## 3 time2 Extraordinary          4.65        1.14    66

## 4 time2 Ordinary               4.73        1.24    64

It’s also important to visualize your data.

zhang_descriptives <- zhang_long %>%

  group_by(time,condition) %>%

  summarize(mean_interest = mean(interest),

            sd_interest = sd(interest),

            n = n())

zhang_descriptives



Consistent with our descriptives calculated above, mean interest is lowest for ordinary events at
time 1, and highest for ordinary events at time 2.

# We'll need to scoot some things sideways to make it all line up

dodge_value <- 0.9

ggplot(data = zhang_long, aes(x = condition, y = interest, fill = time)) +

  geom_violin() + 

  geom_boxplot(width = 0.2,

               position = position_dodge(dodge_value)) +

  

  scale_fill_viridis_d(option = "E", alpha = 0.5) +

  scale_x_discrete(name = "Event Type") + 

  scale_y_continuous(name = "Interest score (1-7)", 

                     breaks = c(1:7)) +

  theme_bw()



8.3.2  Using  aov_ez  to conduct a factorial ANOVA

We will again use  aov_ez()  from the  afex  package to run the ANOVA. Remember that we
need to specify two IVs, one which is between-subjects and one which is within-subjects. This
function needs our data in long format.

8.3.3  Interpreting the output

## Anova Table (Type 3 tests)

## 

## Response: interest

##           Effect     df  MSE         F  ges p.value

## 1      condition 1, 128 2.05      0.46 .003    .498

## 2           time 1, 128 0.61 25.88 *** .044   <.001

## 3 condition:time 1, 128 0.61    4.44 * .008    .037

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

This output is read just like the output from the one-way ANOVA, but our model now has three
different terms (corresponding to our three research questions).

mod_factorial <- aov_ez (data = zhang_long,

                         id = "participant_id",

                         within = "time",

                         between = "condition",

                         dv = "interest",

                         type = 3,

                         es = "pes"

                         )

mod_factorial



8.3.3.1  Hypothesis testing

We get three p values, corresponding to our three research questions. The main effect of
condition is not significant, the main effect of time is significant at , and the interaction
between condition and time is significant at .

8.3.3.2  Statistical values

Again, we get the df, MSE, F, partial , and p-value for each of the main effects and the
interaction.

8.3.4  Checking assumptions

Factorial ANOVA has the same assumptions as one-way ANOVA:

1. The DV is interval or ratio data.
2. The observations should be independent.
3. The residuals should be normally distributed.
4. There should be homogeneity of variance between the groups.

8.3.4.1  Data type

From the experiment design, the DV should be interval or ratio data, and the observations should
be independent. This brings us to an interesting problem: can we treat this DV as interval or
ratio? The Likert scale DV is ordinal, a type of data that are very common in psychology. The
problem is that ordinal data are not interval or ratio data, there’s a fixed number of integer values
they can take (the values of the Likert scale) and you cannot claim that the distance between the
values is equal (is the difference between strongly agree and agree the same as the difference
between agree and neutral?).

Technically, we should not use an ANOVA to analyze ordinal data - but almost everyone does.
Many people argue that if you take the average of multiple Likert scale items, you can interpret
the data as if they are interval and they can be normally distributed. (The interest DV we are
using here is exactly this, it’s the average of three Likert ratings.) Other people argue you should
use non-parametric methods or more complex models such as ordinal regression for this type of
data, but that is out of scope for this course. Whichever route you choose, you should
understand the data you have and you should be able to justify your decision.

α = .001

α = .05

η2



8.3.4.2  Normality of residuals and homogeneity of variance

To check 3 and 4 we again use plots from the  performance  package. Let’s also check our
counts for each group to see if they’re equal.

## [1] 66 64 66 64

## For confidence bands, please install `qqplotr`.

zhang_descriptives$n

plot(check_normality(mod_factorial))

plot(check_homogeneity(mod_factorial))



This all looks pretty good. We have slightly more subjects in the Ordinary condition than the
Extraordinary condition, but the residuals are close to the normal line, and the variance looks
similar across all four groups.

8.3.5  Post-hoc comparisons

Our main effects (condition and time) each only have two levels, so we do not need to do any
post hoc tests to determine which conditions differ from one another; if one of our factors had
had three levels, however, we would use  emmeans()  to compute the contrasts for the main
effect, as we did with the one-way ANOVA.

Because the interaction is significant, we should follow this up with post-hoc tests using
 emmeans()  to determine which comparisons are significant. If the overall interaction is not
significant, you should not conduct additional tests between individual cells of the design.

 emmeans()  requires you to specify the  aov  object, and then the factors you want to contrast.
For an interaction, we use the notation  pairwise ~ IV1 | IV2  and you specify which multiple
comparison correction you want to apply.



## $emmeans

## condition = Extraordinary:

##  time  emmean    SE  df lower.CL upper.CL

##  time1   4.36 0.137 128     4.09     4.63

##  time2   4.65 0.147 128     4.36     4.94

## 

## condition = Ordinary:

##  time  emmean    SE  df lower.CL upper.CL

##  time1   4.04 0.139 128     3.76     4.31

##  time2   4.73 0.149 128     4.44     5.03

## 

## Confidence level used: 0.95 

## 

## $contrasts

## condition = Extraordinary:

##  contrast      estimate    SE  df t.ratio p.value

##  time1 - time2   -0.288 0.136 128  -2.123  0.0357

## 

## condition = Ordinary:

##  contrast      estimate    SE  df t.ratio p.value

##  time1 - time2   -0.695 0.138 128  -5.049  <.0001

The code above asks R to tell us the difference between time1 and time2 at each level of
condition. We could swap the order of the two factors to instead see the difference between
ordinary and extraordinary at each time:

emmeans(mod_factorial,

        pairwise ~ time | condition, 

        adjust = "bonferroni")

emmeans(mod_factorial,

        pairwise ~ condition | time, 

        adjust = "bonferroni")



## $emmeans

## time = time1:

##  condition     emmean    SE  df lower.CL upper.CL

##  Extraordinary   4.36 0.137 128     4.09     4.63

##  Ordinary        4.04 0.139 128     3.76     4.31

## 

## time = time2:

##  condition     emmean    SE  df lower.CL upper.CL

##  Extraordinary   4.65 0.147 128     4.36     4.94

##  Ordinary        4.73 0.149 128     4.44     5.03

## 

## Confidence level used: 0.95 

## 

## $contrasts

## time = time1:

##  contrast                 estimate    SE  df t.ratio p.value

##  Extraordinary - Ordinary   0.3246 0.195 128   1.661  0.0992

## 

## time = time2:

##  contrast                 estimate    SE  df t.ratio p.value

##  Extraordinary - Ordinary  -0.0829 0.209 128  -0.397  0.6923

Look at how the contrasts are expressed subtly different when you switch the order. Think
carefully about your research question and hypotheses for which way around is the most
informative.

8.3.6  Creating an interaction plot

When you have a factorial design, one powerful way of visualising the data is through an
interaction plot. This is essentially a line graph where the x-axis has one IV and separate lines for
a second IV. However, once you have the factorial ANOVA model, you can add confidence
intervals to the plot to visualise uncertainty. afex has it’s own function called  afex_plot() 
which you can use with the model object you created.

In the code below, there are a few key argument to highlight:



 object  is the afex model you created.

 x  is the variable you want on the x-axis.

 trace  is the variable you want to plot as separate lines.

 error  controls whether the error bars show confidence intervals for between-subjects or
within-subjects. In a mixed design, these have different properties, so you must think about
which you want to plot and highlight to the reader.

 factor_levels  lets you edit the levels of factors you plot, such as renaming or reordering
them. You add each factor into a list but check the documentation and vignettes for other
options.

One handy feature about this function is it uses ggplot2 in the background, so you can add
layers to the initial function like other plots that we have created.

## Renaming/reordering factor levels of 'time':

##   time1 -> Time 1

##   time2 -> Time 2

## Warning: Panel(s) show a mixed within-between-design.

## Error bars do not allow comparisons across all means.

## Suppress error bars with: error = "none"

afex_plot(object = mod_factorial,

          x = "time",

          trace = "condition",

          error = "between",

          factor_levels = list(time = c("Time 1","Time 2")),

          data_geom = geom_violin) +

  

  scale_y_continuous(breaks = 1:7) +

  theme_bw()



8.3.7  Reporting the results

## Renaming/reordering factor levels of 'time':

##   time1 -> Time 1

##   time2 -> Time 2

## Warning: Panel(s) show a mixed within-between-design.

## Error bars do not allow comparisons across all means.

## Suppress error bars with: error = "none"



Figure 8.2: Predicted (Time 1) and actual (Time 2) interest ratings for ordinary events (dashed
lines) and extraordinary events (solid lines). Error bars are between-subject standard error of the
mean.
You could write something like:

26. https://psyteachr.github.io/quant-fun-v3/↩︎

Across all conditions, participants rated their interest in the time capsule materials as mildly
positive (Figure 8.2) . A factorial ANOVA with factors Condition (ordinary, extraordinary) and
Time (Time 1, Time 2) revealed a significant main effect of time (F(1,128) = 25.88, p < .001,
partial  = .044), with ratings higher at Time 2 (4.69, SD = 1.19) than at Time 1 (4.20, sd =
1.12). The increase from Time 1 to Time 2 was larger for ordinary events (mean increase
0.70, SD = 1.13) than for extraordinary events (0.29, SD = 1.11), and this interaction was
significant (F(1,128) = 4.44, p = .037, partial  = .008). There was no significant effect of
condition (F(1,128) = 0.46, p = .50, partial  = .003)

η2

η2

η2

https://psyteachr.github.io/quant-fun-v3/
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