
Chapter 3  Data Skills HW 3: Data wrangling
and summary statistics #

By Gaby Mahrholz and Carolina E. Kuepper-Tetzel, adapted by Abigail Noyce

Learning Outcomes

By the end of this HW, you should be able to:

apply data wrangling functions  group_by() ,  summarize() ,  select()  and
 pivot_longer()  to novel datasets

read and interpret error messages

realize there are several ways of getting to the results

3.1  Activity 1: Setup

We can work in the same project as in the Intro to R and RStudio HW.

Open a new R Markdown notebook: click File > New File > R Notebook or click on the little
page icon with a green plus sign (top left).

Give it a meaningful  title  (e.g., ‘HW 2: Data Skills’) - you can also change the title later.
Feel free to add an  author  field with your name or Andrew ID.

Once the .  Rmd  is opened, you need to save the file.

To save it, click File > Save As… or click on the little disc icon. Name it something
meaningful (e.g., “data-wrangling.Rmd”). Make sure there are no spaces in the name - R is
not very fond of spaces… This file will automatically be saved in your project folder (i.e.,



your working directory) so you should now see this file appear in your file viewer pane.

Remember: Don’t ever save a new project inside another project directory. This can cause
some hard-to-resolve problems.

3.2  Activity 2: Load in the libraries and read in the
data

We will use  tidyverse  today, and we want to create a data object  data_prp  that stores the
data from the file  prp_data_reduced.csv .

You can look back at the previous HW assignment to remind yourself how to do these steps.

And remember to have a quick  glimpse()  at your data.

3.3  Activity 3: Calculating demographics

3.3.1  …for the full sample using  summarize() 

The  summarize()  function is part of the tidyverse’s six core data manipulation tools, alongside
 group_by() ,  select() ,  filter() ,  mutate() , and  arrange() . Remember that we can
use the pipe syntax  %>%  to pass data objects from one function to another.

Within  summarize() , we can use the  n()  function, which calculates the number of rows in
the dataset. Since each row corresponds to a unique participant, this gives us the total number
of participants.

To calculate the mean age and the standard deviation of age, we need to use the functions
 mean()  and  sd()  on the column  Age  respectively.

demo_total <- data_prp %>% 

  summarize(n = n(), # participant number

            mean_age = mean(Age), # mean age

            sd_age = sd(Age)) # standard deviation of age



Warning: There were 2 warnings in `summarize()`.

The first warning was:

ℹ In argument: `mean_age = mean(Age)`.

Caused by warning in `mean.default()`:

! argument is not numeric or logical: returning NA

ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.

n mean_age sd_age

89 NA NA

R did not give us an error message per se, but the output is not quite as expected either. There
are  NA  values in the  mean_age  and  sd_age  columns. Looking at the warning message and
at  Age , can you explain what happened?

Hint

3.3.1.1  Fixing  Age 

Might be wise to look at the unique answers in column  Age  to determine what is wrong. We
can do that with the function  distinct() .

One cell has the string “years” added to their number 25, which has converted the entire column
into a character column.

We can easily fix this by extracting only the numbers from the column and converting it into a
numeric data type. The  parse_number()  function, which is part of the  tidyverse  package,
handles both steps in one go (so there’s no need to load additional packages).

demo_total

age_distinct <- data_prp %>% 

  distinct(Age)

age_distinct



We will combine this with the  mutate()  function to create a new column called  Age 
(containing those numeric values), effectively replacing the old  Age  column (which had the
character values).

[1] "double"

3.3.1.2  Computing summary stats

Excellent. Now that the numbers are in a numeric format, let’s try calculating the demographics
for the total sample again.

n mean_age sd_age

89 NA NA

Even though there’s no error or warning, the table still shows  NA  values for  mean_age  and
 sd_age . So, what could possibly be wrong now?

Hint

data_prp <- data_prp %>% 

  mutate(Age = parse_number(Age))

typeof(data_prp$Age) # fixed

demo_total <- data_prp %>% 

  summarize(n = n(), # participant number

            mean_age = mean(Age), # mean age

            sd_age = sd(Age)) # standard deviation of age

demo_total



3.3.1.3  Computing summary stats - third attempt

To ensure R ignores missing values during calculations, we need to add the extra argument
 na.rm = TRUE  to the  mean()  and  sd()  functions.

n mean_age sd_age

89 21.88506 3.485603

3.3.2  … per gender using  summarize()  and  group_by() 

Now we want to compute the summary statistics for each gender. The code inside the
 summarize()  function remains unchanged; we just need to use the  group_by()  function
beforehand to tell R that we want to compute the summary statistics for each group separately.
It’s also a good practice to use  ungroup()  afterwards, so you are not taking groupings forward
unintentionally.

demo_total <- data_prp %>% 

  summarize(n = n(), # participant number

            mean_age = mean(Age, na.rm = TRUE), # mean age

            sd_age = sd(Age, na.rm = TRUE)) # standard deviation of age

demo_total

demo_by_gender <- data_prp %>% 

  group_by(Gender) %>% # split data up into groups (here Gender)

  summarize(n = n(), # participant number 

            mean_age = mean(Age, na.rm = TRUE), # mean age 

            sd_age = sd(Age, na.rm = TRUE)) %>%  # standard deviation of age

  ungroup()

demo_by_gender

https://rdrr.io/r/base/mean.html
https://rdrr.io/r/stats/sd.html


Gender n mean_age sd_age

1 17 23.31250 5.770254

2 69 21.57353 2.738973

3 3 21.33333 1.154700

3.3.3  Adding percentages

Sometimes, it may be useful to calculate percentages, such as for the gender split. You can do
this by adding a line within the  summarize()  function to perform the calculation. All we need to
do is take the number of female, male, and non-binary participants (stored in the  n  column of
 demo_by_gender ), divide it by the total number of participants (stored in the  n  column of
 demo_total ), and multiply by 100. Let’s add  percentage  to the  summarize()  function of
 demo_by_gender . Make sure that the code for  percentages  is placed after the value for  n 
has been computed.

Accessing the value of  n  for the different gender categories is straightforward because we can
refer back to it directly. However, since the total number of participants is stored in a different
data object, we need to use a base R function to access it – specifically the  $  operator. To do
this, you simply type the name of the data object (in this case,  demo_total ), followed by the
 $  symbol (with no spaces), and then the name of the column you want to retrieve (in this case,
 n ). The general pattern is  data$column .

demo_by_gender <- data_prp %>% 

  group_by(Gender) %>% 

  summarize(n = n(), 

            # n from the line above divided by n from demo_total *100

            percentage = n/demo_total$n *100, 

            mean_age = mean(Age, na.rm = TRUE), 

            sd_age = sd(Age, na.rm = TRUE)) %>% 

  ungroup()

demo_by_gender



Gender n percentage mean_age sd_age

1 17 19.101124 23.31250 5.770254

2 69 77.528090 21.57353 2.738973

3 3 3.370786 21.33333 1.154700

3.3.4  Write it up

Using either an inline code chunk, or just copying the values, create a level 2 heading
“Participant demographics”. For each gender category, report the number of participants and
their mean age and standard deviation. (Hint: you may need to look at the codebook to interpret
the gender values.)

3.4  Activity 4: Scoring Questionable Research
Practices (QRPs)

This questionaire asks participants to report how acceptable they find a number of questionable
research practices (QRPs). The main goal is to compute the mean QRP score per participant for
time point 1. At the moment, the data is in wide format. The table below shows data from the
first 3 participants:

Code Gender Age Ethnicity Secondyeargrade Opptional_mod Opptional_mo

Tr10 2 22
White
European

2 1
Research met
first year

Bi07 2 20
White
British

3 2 NA

SK03 2 22
White
British

1 2 NA

head(data_prp, n = 3)



Looking at the QRP data at time point 1, you determine that:

individual item columns are numeric character , and

according to the codebook, there are no reverse-coded items in this questionnaire.

According to the codebook and the data table above, we just have to compute the average

score for QRP items 1 to 11, since items 12 to 15 are distractor items. Seems quite
straightforward.

However, as you can see in the table above, each item is in a separate column, meaning the data
is in wide format. It would be much easier to calculate the mean scores if the items were
arranged in long format.

Let’s tackle this problem step by step. It’s best to create a separate data object for this. If we
tried to compute it within  data_prp , it could quickly become messy.

Step 1: Select the relevant columns  Code , and  QRPs_1_Time1  to  QRPs_11_Time1  and
store them in an object called  qrp_t1 

Step 2: Pivot the data from wide format to long format using  pivot_longer()  so we can
calculate the average score more easily (in step 3)

Step 3: Calculate the average QRP score (  QRPs_Acceptance_Time1_mean ) per participant
using  group_by()  and  summarize() 

We’ll walk through each of these in detail.

3.4.1   select() 

The select function allows to include or exclude certain variables (columns). Here we want to
focus on the participant ID column (i.e.,  Code ) and the QRP items at time point 1. We can either
list them all individually, i.e., Code, QRPs_1_Time1, QRPs_2_Time1, QRPs_3_Time1, and so
forth (you get the gist), but that would take forever to type.

A shortcut is to use the colon operator  : . It allows us to select all columns that fall within the
range of  first_column_name  to  last_column_name . We can apply this here since the QRP
items (1 to 11) are sequentially listed in  data_prp .



Code QRPs_1_Time1 QRPs_2_Time1 QRPs_3_Time1 QRPs_4_Time1 QRPs_5_T

Tr10 7 7 5 7

Bi07 7 7 2 7

SK03 7 7 6 6

SM95 7 7 2 6

St01 7 7 6 7

3.4.2   pivot_longer() 

As you can see, the table we got from Step 1 is in wide format. To get it into wide format, we
need to define:

the columns that need to be reshuffled from wide into long format (  col  argument). Here we
selected “everything except the  Code  column”, as indicated by  -Code  [minus  Code ].
However,  QRPs_1_Time1:QRPs_11_Time1  would also work and give you the exact same
result.

the  names_to  argument. R is creating a new column in which all the column names from
the columns you selected in  col  will be stored in. Here we are naming this column “Items”
but you could pick something equally sensible if you like.

the  values_to  argument. R creates this second column to store all responses the
participants gave to the individual questions, i.e., all the numbers in this case. We named it
“Scores” here, but you could have called it something different, like “Responses”

qrp_step1 <- data_prp %>% 

  select(Code, QRPs_1_Time1:QRPs_11_Time1)

# show first 5 rows of qrp_step1

head(qrp_step1, n = 5)



Code Items Scores

Tr10 QRPs_1_Time1 7

Tr10 QRPs_2_Time1 7

Tr10 QRPs_3_Time1 5

Tr10 QRPs_4_Time1 7

Tr10 QRPs_5_Time1 3

Tr10 QRPs_6_Time1 4

Tr10 QRPs_7_Time1 5

Tr10 QRPs_8_Time1 7

Tr10 QRPs_9_Time1 6

Tr10 QRPs_10_Time1 7

Tr10 QRPs_11_Time1 7

Bi07 QRPs_1_Time1 7

Bi07 QRPs_2_Time1 7

Bi07 QRPs_3_Time1 2

Bi07 QRPs_4_Time1 7

qrp_step2 <- qrp_step1 %>% 

  pivot_longer(cols = -Code, names_to = "Items", values_to = "Scores")

# show first 15 rows of qrp_step2

head(qrp_step2, n = 15)



3.4.3   group_by()  and  summarize() 

This follows exactly the same sequence we used when calculating descriptive statistics by
gender. The only difference is that we are now grouping the data by the participant’s  Code 
instead of  Gender .

 summarize()  works exactly the same way:  summarize(new_column_name =
function_to_calculate_something(column_name_of_numeric_values)) 

The  function_to_calculate_something  can be  mean() ,  sd()  or  sum()  for mean scores,
standard deviations, or summed-up scores respectively. You could also use  min()  or  max() 
if you wanted to determine the lowest or the highest score for each participant.

3.4.4  Putting it all together:

Finally, let’s compute mean and standard deviations across the whole sample for
 QRPs_Acceptance_Time1_mean . You can look back at the examples in Activity 3 for this.

qrp_t1 <- data_prp %>% 

  

  #Step 1

  select(Code, QRPs_1_Time1:QRPs_11_Time1) %>%

  

  # Step 2

  pivot_longer(cols = -Code, names_to = "Items", values_to = "Scores") %>% 

  

  # Step 3

  group_by(Code) %>% # grouping by participant id

  summarize(QRPs_Acceptance_Time1_mean = mean(Scores)) %>% # calculating the averag

  

  ungroup() # just make it a habit

https://rdrr.io/r/base/mean.html
https://rdrr.io/r/stats/sd.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html


3.4.5  Write it up

Add a level 2 heading “QRP acceptance scores at Time 1” and report the mean and standard
deviation scores across the sample.

3.5  Activity 5: Knitting

Once you’ve completed your R Markdown file, the final step is to “knit” it, which converts the
 .Rmd  file into a HTML file. Knitting combines your code, text, and output (like tables and plots)
into a single cohesive document. This is a really good way to check your code is working.

To knit the file, click the  Preview  button at the top of your RStudio window. The document will
be generated and, depending on your setting, automatically opened in the viewer in the  Output
pane  or an external browser window.

If any errors occur during knitting, RStudio will show you an error message with details to help
you troubleshoot.

If you want to intentionally keep any errors we tackled today to keep a reference on how you
solved them, you could add  error=TRUE  or  eval=FALSE  to the code chunk that isn’t running.

3.6  Activity 6: Export a data file

To avoid having to repeat the same steps in future, it’s a good idea to save the data objects
you’ve created today as csv files. You can do this by using the  write_csv()  function from the
 readr  package. The csv files will appear in your project folder.

The basic syntax is:

Now, let’s export the object  data_prp_final .

write_csv(data_object, "filename.csv")

write_csv(qrp_t1, "2025-01-13_qrp-scores-t1.csv")



I like to name my files with a date and a “slug” so that they sort in chronological order and are
easily read. However, feel free to choose a name that makes sense to you.

3.7  Activity 5: Save and quit!

We’re done with all the coding activities for this HW, so save and quit.

First, make sure your R Markdown is saved. If there are any unsaved changes then the save
icon will be in blue, if it’s greyed out it means there are no unsaved changes. But just to be
safe, always hit  Ctrl + s  or click  File - Save  which will save your file.

Then, exit RStudio completely by clicking “File - Quit session” or using the shortcut “Ctrl +
Q” (Windows) or “Cmd + Q” (Mac).

3.8  Check for completeness

For this HW, upload your R notebook (.Rmd file), and your Preview html file (.nb.html). Both
should include:

Code chunks that load the tidyverse packages, read in the data, and inspect it.
Your code that computes the participant demographics, and your sentences reporting them.
Your code that computes the mean QRP scores, and your sentence reporting them.
Any notes for yourself about things you figured out along the way

All code in your R Notebook should run successfully.


