
Chapter 4  HW 4. Recoding and joins

Learning Outcomes

By the end of this HW, you should be able to:

recode data values using the  mutate()  function

isolate messy data using  separate()  and  case_when() 

rearrange data using  pivot_wider() ,  pivot_longer() , and  ???_join()  functions

realize there are several ways of getting to the results

We will also review the  select() ,  pivot_longer() , and  summarize()  functions from last
HW. The main purpose of the skills reviewed in this chapter is to wrangle your data into shape
for data analysis and visualization.

4.1  Activity 1: Setup

We can work in the same project as in the previous HWs.

Open a new R Markdown notebook: click File > New File > R Notebook or click on the little
page icon with a green plus sign (top left).

Give it a meaningful  title  (e.g., ‘HW 4: Data wrangling’) - you can also change the title
later. Feel free to add an  author  field with your name or Andrew ID. Then save the file -
remember, no spaces!



4.2  Activity 2: Load in the libraries and read in the
data

We will use  tidyverse  today, and we want to create a data object  data_prp  that stores the
data from the file  prp_data_reduced.csv . We also want to load a data object  qrp_t1  from
the file we saved in HW 3. Mine is called  2025-01-13_qrp-scores-t1.csv  but yours may be
different!

You can look back at the previous HW assignment to remind yourself how to do these steps.

And remember to have a quick  glimpse()  at your data.

4.3  Activity 3: Calculate participants’ confidence in
understanding Open Science practices

The main goal is to compute the mean Understanding score per participant.The mean
Understanding score for time point 2 has already been calculated (in the
 Time2_Understanding_OS  column), but we still need to compute it for time point 1.

Looking at the Understanding data at time point 1, you determine that

individual item columns are character, and

according to the codebook, there are no reverse-coded items in this questionnaire.

The steps are quite similar to those for QRP, but we need to add an extra step: converting the
character labels into numbers.

Again, let’s do this step by step:

Step 1: Select the relevant columns  Code , and every Understanding column from time
point 1 (e.g., from  Understanding_OS_1_Time1  to  Understanding_OS_12_Time1 ) and
store them in an object called  understanding_t1 

Step 2: Pivot the data from wide format to long format using  pivot_longer()  so we can
recode the labels into values (step 3) and calculate the average score (in step 4) more easily



Step 3: Recode the values “Not at all confident” as 1 and “Entirely confident” as 7. All other
values are already numbers. We can use functions  mutate()  in combination with
 case_match()  for that

Step 4: Calculate the average Understanding Open Science score
(  Time1_Understanding_OS ) per participant using  group_by()  and  summarise() 

4.3.1  Steps 1 and 2: Select and pivot

Try the first 2 steps yourself using the code from Activity 4 as a template. If you get stuck, you
can peek at the solution below.

Solution

4.3.2  Step 3: Recoding the values

We now want to recode the values in the  Responses  column (or whatever name you picked for
your column that has some of the numbers in it) so that “Not at all confident” = 1 and “Entirely
confident” = 7. We want to keep all other values as they are (2-6 look already quite “numeric”).

Let’s create a new column  Responses_corrected  that stores the new values with  mutate() .
Then we can combine that with the  case_match()  function.

The first argument in  case_match()  is the column name of the variable you want to
recode.

Then you can start recoding the values in the way of  CurrentValue ~ NewValue  (~ is a
tilde). Make sure you use the  ~  and not  = !

Lastly, the  .default  argument tells R what to do with values that are neither “Not at all
confident” nor “Entirely confident”. Here, we want to replace them with the original value of
the  Responses  column. In other datasets, you may want to set the default to  NA  for
missing values, a character string or a number, and  case_match()  is happy to oblige.



Error in `mutate()`:

ℹ In argument: `Responses_corrected = case_match(...)`.

Caused by error in `case_match()`:

! Can't combine `..1 (right)` <double> and `.default` <character>.

Error!!?! Can you explain what is happening here?

Hint: Have a look at the error message.

So how do we fix this? Actually, there are several ways this could be done. Here are three
possible solutions.

Fix option 1
Fix option 2
Fix option 3

4.3.3  Your Turn

Choose the option that works best for you to modify the code of  understanding_t1  above
that didn’t work/ gave you an error message. Once you do that, you should be able to calculate
the mean Understanding Score per participant. Store the average scores in a variable called
 Time1_Understanding_OS . If you need help, refer to the hint below or use HW 3, Activity 4 as
guidance.

Hint:
Finally, let’s compute mean and standard deviations across the whole sample for
 Time1_Understanding_OS . You can look back at the previous HWs for examples of thus.

understanding_t1 <- understanding_t1 %>% 

  mutate(Responses_corrected = case_match(Responses, # column of the values to reco

                                          "Not at all confident" ~ 1, # values to r

                                          "Entirely confident" ~ 7,

                                          .default = Responses # all other values t

  ))



4.3.4  Write it up

Add a level 2 heading “Open Science Understanding Scores at Time 1” and report the mean and
standard deviation scores across the sample.

4.4  Activity 4: Survey of Attitudes Towards
Statistics (SATS-28)

The main goal is to compute the mean SATS-28 score for each of the 4 subscales per participant
for time point 1. Looking at the SATS data at time point 1, you determine that

individual item columns are numeric, and

according to the codebook, there are some reverse-coded items in this questionnaire.

Additionally, we are looking to compute the means for the 4 different subscales of the SAT-
28 which are Affect, CognitiveCompetence, Value, and Difficulty.

This scenario is slightly more tricky than the previous ones due to the reverse-coding and the 4
subscales. So, let’s tackle this step by step again:

Step 1: Select the relevant columns  Code , and every SATS28 column from time point 1
(e.g., from  SATS28_1_Affect_Time1  to  SATS28_28_Difficulty_Time1 ) and store them in
an object called  sats_t1 

Step 2: Pivot the data from wide format to long format using  pivot_longer()  so we can
recode the labels into values (step 3) and calculate the average score (in step 4) more easily

Step 3: We need to know which items belong to which subscale - fortunately, we have that
information in the variable name and can use the  separate()  function to access it.

Step 4: We need to know which items are reverse-coded and then reverse-score them -
unfortunately, the info is only in the codebook and we need to find a work-around.
 case_when()  can help identify and re-score the reverse-coded items.

Step 5: Calculate the average SATS score per participant and subscale using  group_by() 
and  summarise() 



Step 6: use  pivot_wider()  to spread out the dataframe into wide format and  rename() 
to tidy up the column names

4.4.1  Steps 1 and 2: select and pivot

The selecting and pivoting are exactly the same way as we already practiced in the other 2
questionnaires. Apply them here to this questionnaire.

4.4.2  Step 3: separate Subscale information

If you look at the  Items  column more closely, you can see that there is information on the
 Questionnaire , the  Item_number , the  Subscale , and the  Timepoint  the data was
collected at.

We can separate the information into separate columns using the  separate()  function. The
function’s first argument is the column to separate, then define  into  which columns you want
the original column to split up, and lastly, define the separator  sep  (here an underscore). For
our example, we would write:

However, we don’t need all of those columns, so we could just drop the ones we are not
interested in by replacing them with  NA .

We might also add an extra argument of  convert = TRUE  to have numeric columns (i.e.,
 Item_number ) converted to numeric as opposed to keeping them as characters. Saves us
typing a few quotation marks later in Step 4.

separate(Items, into = c("SATS", "Item_number", "Subscale", "Time"), sep = "_")

separate(Items, into = c(NA, "Item_number", "Subscale", NA), sep = "_")

sats_t1 <- sats_t1 %>% 

  # Step 3

  separate(Items, into = c(NA, "Item_number", "Subscale", NA), sep = "_", convert =



4.4.3  Step 4: identify reverse-coded items and then correct
them

We can use  case_when()  within the  mutate()  function here to create a new column  FW_RV 
that stores information on whether the item is a reverse-coded item or not.

 case_when()  works similarly to  case_match() , however  case_match()  only allows us to
“recode” values (i.e., replace one value with another), whereas  case_when()  is more flexible. It
allows us to use conditional statements on the left side of the tilde which is useful when you
want to change only some of the data based on specific conditions.

Looking at the codebook, it seems that items 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 19, 20, 21, 23, 25,
26, 27, and 28 are reverse-coded. The rest are forward-coded.

We want to tell R now, that

if the  Item_number  is any of those numbers listed above, R should write “Reverse” into the
new column  FW_RV  we are creating. Since we have a few possible matches for
 Item_number , we need the Boolean expression  %in%  rather than  == .

if  Item_number  is none of those numbers, then we would like the word “Forward” in the
 FW_RV  column to appear. We can achieve that by specifying a  .default  argument again,
but this time we want a “word” rather than a value from another column.

sats_t1 <- sats_t1 %>% 

  mutate(FW_RV = case_when(

    Item_number %in% c(2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 19, 20, 21, 23, 25, 26,

    .default = "Forward"

  ))

Moving on to correcting the scores: Once again, we can use  case_when ()  within the
 mutate()  function to create another conditional statement. This time, the condition is:

if  FW_RV  column has a value of “Reverse” then we would like to turn all 1 into 7, 2 into 6,
etc.



if  FW_RV  column has a value of “Forward” then we would like to keep the score from the
 Response  column

There is a quick way and a not-so-quick way to achieve the actual reverse-coding.

4.4.3.1  Option 1 (quick)

The easiest way to reverse-code scores is to take the maximum value of the scale, add 1 unit,
and subtract the original value. For example, on a 5-point Likert scale, it would be 6 minus the
original rating; for a 7-point Likert scale, 8 minus the original rating, etc.

Here we are using a Boolean expression to check if the string “Reverse” is present in the
 FW_RV  column. If this condition is  TRUE , the value in the new column we’re creating,
 Scores_corrected , will be calculated as 8 minus the value from the Response column. If the
condition is FALSE (handled by the .default argument), the original values from the  Response 
column will be retained.

sats_t1 <- sats_t1 %>% 

  mutate(Scores_corrected = case_when(

    FW_RV == "Reverse" ~ 8-Response,

    .default = Response

  ))

4.4.3.2  Option 2 (not so quick)

This involves using two conditional statements.

As stated above, the longer approach involves using two conditional statements. The first
condition checks if the value in the  FW_RV  column is “Reverse”, while the second condition
checks if the value in the  Response  column equals a specific number. When both conditions
are met, the corresponding value on the right side of the tilde is placed in the newly created
 Scores_corrected_v2  column.

For example, line 3 would read: if the value in the  FW_RV  column is “Reverse” AND the value in
the  Response  column is 1, then assign a value of 7 to the  Scores_corrected_v2  column.



sats_t1 <- sats_t1 %>% 

  mutate(Scores_corrected_v2 = case_when(

    FW_RV == "Reverse" & Response == 1 ~ 7,

    FW_RV == "Reverse" & Response == 2 ~ 6,

    FW_RV == "Reverse" & Response == 3 ~ 5,

    # no need to recode 4 as 4

    FW_RV == "Reverse" & Response == 5 ~ 3,

    FW_RV == "Reverse" & Response == 6 ~ 2,

    FW_RV == "Reverse" & Response == 7 ~ 1,

    .default = Response

  ))

As you can see now in  sats_t1 , both columns  Scores_corrected  and
 Scores_corrected_v2  are identical.

4.4.3.3  Check the reverse-coding output

One way to check whether our reverse-coding worked is by examining the  distinct  values
in the original  Response  column and comparing them with the  Scores_corrected . We should
also retain the  FW_RV  column to observe how the reverse-coding applied.

To see the patterns more clearly, we can use  arrange()  to sort the values in a meaningful
order. Remember, the default sorting order is ascending, so if you want to sort values in
descending order, you’ll need to wrap your variable in the desc() function.

check_coding <- sats_t1 %>% 

  distinct(FW_RV, Response, Scores_corrected) %>% 

  arrange(desc(FW_RV), Response)

4.4.4  Step 5: Calculate mean scores

Now that we know everything worked out as intended, we can calculate the mean scores of
each subscale for each participant in  sats_t1 .

Hint



4.4.5  Step 6: Transform data back to wide format

The final step is to transform the data back into wide format, ensuring that each subscale has its
own column. This will make it easier to join the data objects later on. In  pivot_wider() , the
first argument,  names_from , specifies the column you want to use for your new column
headings. The second argument,  values_from , tells R which column should provide the cell
values.

We should also rename the column names to match those in the codebook. Conveniently, we
can use a function called  rename()  that works exactly like  select()  (following the pattern
 new_name = old_name ), but it keeps all other column names the same rather than reducing the
number of columns.

4.4.6  Write it up

Compute the mean score and the standard deviation across the sample for each subscale. Add
a level 2 heading “SATS-28 Scores at Time 1” and report the results.

4.5  Activity 5: Join everything together with  ???
_join() 

Time to join all the relevant data files into a single dataframe, which will be used in the next
chapters on data visualization. There are four ways to join data:  inner_join() ,  left_join() ,
 right_join() , and  full_join() . Each function behaves differently in terms of what
information is retained from the two data objects. Here is a quick overview:

sats_t1 <- sats_t1 %>% 

  pivot_wider(names_from = Subscale, values_from = mean_score) %>% 

  rename(SATS28_Affect_Time1_mean = Affect,

         SATS28_CognitiveCompetence_Time1_mean = CognitiveCompetence,

         SATS28_Value_Time1_mean = Value,

         SATS28_Difficulty_Time1_mean = Difficulty)



 inner_join()  returns only the rows where the values in the column specified in the  by = 
statement match in both tables.

 left_join()  retains the complete first (left) table and adds values from the second (right)
table that have matching values in the column specified in the  by =  statement. Rows in
the left table with no match in the right table will have missing values (  NA ) in the new
columns.

 right_join()  retains the complete second (right) table and adds values from the first (left)
table that have matching values in the column specified in the  by =  statement. Rows in
the right table with no match in the left table will have missing values (  NA ) in the new
columns.

 full_join()  returns all rows and all columns from both tables.  NA  values fill unmatched
rows.

From our original  data_prp , we need to select demographics data and all summarised
questionnaire data from time point 2. Next, we will join this with all other aggregated datasets
from time point 1 which are currently stored in separate data objects in the  Global
Environment .

While you may be familiar with  inner_join()  from last year, for this task, we want to retain all
data from all the data objects. Therefore, we will use  full_join() . Keep in mind, you can only
join two data objects at a time, so the upcoming code chunk will involve a fair bit of piping and
joining.

Note: Since I (Gaby) like my columns arranged in a meaningful way, I will use  select()  at the
end to order them better.

data_prp_final <- data_prp %>% 

  select(Code:Plan_prereg, Pre_reg_group:Time2_Understanding_OS) %>% 

  full_join(qrp_t1) %>% 

  full_join(understanding_t1) %>% 

  full_join(sats_t1) %>% 

  select(Code:Plan_prereg, Pre_reg_group, SATS28_Affect_Time1_mean, SATS28_Cognitiv



4.6  Activity 6: Knit and export

Knit the  .Rmd  file to ensure everything runs as expected. Once it does, export the data object
 data_prp_final  as a csv. Name it something meaningful, something like
 data_prp_wrangled.csv .

To avoid having to repeat the same steps in future, it’s a good idea to save the data objects
you’ve created today as csv files. You can do this by using the  write_csv()  function from the
 readr  package. The csv files will appear in your project folder.

The basic syntax is:

Now, let’s export the object  data_prp_final .

I like to name my files with a date and a “slug” so that they sort in order and are easily read.
However, feel free to choose a name that makes sense to you.

4.7  Check for completeness

For this HW, upload your R notebook (.Rmd file), and your Preview html file (.nb.html). Both
should include:

Code chunks that load the tidyverse packages, read in the data, and inspect it.
Your code that computes the OSP understanding and SATS-28 scores, and your sentences
reporting them.
Any notes for yourself about things you figured out along the way

All code in your R Notebook should run successfully.

write_csv(data_object, "filename.csv")

write_csv(data_prp_final, "2025-01-13_data_prp_wrangled.csv")


