
Chapter 4 HW 4. Recoding and joins

Learning Outcomes

By the end of this HW, you should be able to:

recode data values using the mutate() function

isolate messy data using separate() and case_when()

rearrange data using pivot_wider() , pivot_longer() , and ???_join() functions

realize there are several ways of getting to the results

We will also review the select() , pivot_longer() , and summarize() functions from last
HW. The main purpose of the skills reviewed in this chapter is to wrangle your data into shape
for data analysis and visualization.

4.1 Activity 1: Setup

We can work in the same project as in the previous HWs.

Open a new R Markdown notebook: click File > New File > R Notebook or click on the little
page icon with a green plus sign (top left).

Give it a meaningful title (e.g., ‘HW 4: Data wrangling’) - you can also change the title
later. Feel free to add an author field with your name or Andrew ID. Then save the file -
remember, no spaces!

4.2 Activity 2: Load in the libraries and read in the
data

We will use tidyverse today, and we want to create a data object data_prp that stores the
data from the file prp_data_reduced.csv . We also want to load a data object qrp_t1 from
the file we saved in HW 3. Mine is called 2025-01-13_qrp-scores-t1.csv but yours may be
different!

You can look back at the previous HW assignment to remind yourself how to do these steps.

And remember to have a quick glimpse() at your data.

4.3 Activity 3: Calculate participants’ confidence in
understanding Open Science practices

The main goal is to compute the mean Understanding score per participant.The mean
Understanding score for time point 2 has already been calculated (in the
 Time2_Understanding_OS column), but we still need to compute it for time point 1.

Looking at the Understanding data at time point 1, you determine that

individual item columns are character, and

according to the codebook, there are no reverse-coded items in this questionnaire.

The steps are quite similar to those for QRP, but we need to add an extra step: converting the
character labels into numbers.

Again, let’s do this step by step:

Step 1: Select the relevant columns Code , and every Understanding column from time
point 1 (e.g., from Understanding_OS_1_Time1 to Understanding_OS_12_Time1) and
store them in an object called understanding_t1

Step 2: Pivot the data from wide format to long format using pivot_longer() so we can
recode the labels into values (step 3) and calculate the average score (in step 4) more easily

Step 3: Recode the values “Not at all confident” as 1 and “Entirely confident” as 7. All other
values are already numbers. We can use functions mutate() in combination with
 case_match() for that

Step 4: Calculate the average Understanding Open Science score
(Time1_Understanding_OS) per participant using group_by() and summarise()

4.3.1 Steps 1 and 2: Select and pivot

Try the first 2 steps yourself using the code from Activity 4 as a template. If you get stuck, you
can peek at the solution below.

Solution

4.3.2 Step 3: Recoding the values

We now want to recode the values in the Responses column (or whatever name you picked for
your column that has some of the numbers in it) so that “Not at all confident” = 1 and “Entirely
confident” = 7. We want to keep all other values as they are (2-6 look already quite “numeric”).

Let’s create a new column Responses_corrected that stores the new values with mutate() .
Then we can combine that with the case_match() function.

The first argument in case_match() is the column name of the variable you want to
recode.

Then you can start recoding the values in the way of CurrentValue ~ NewValue (~ is a
tilde). Make sure you use the ~ and not = !

Lastly, the .default argument tells R what to do with values that are neither “Not at all
confident” nor “Entirely confident”. Here, we want to replace them with the original value of
the Responses column. In other datasets, you may want to set the default to NA for
missing values, a character string or a number, and case_match() is happy to oblige.

Error in `mutate()`:

ℹ In argument: `Responses_corrected = case_match(...)`.

Caused by error in `case_match()`:

! Can't combine `..1 (right)` <double> and `.default` <character>.

Error!!?! Can you explain what is happening here?

Hint: Have a look at the error message.

So how do we fix this? Actually, there are several ways this could be done. Here are three
possible solutions.

Fix option 1
Fix option 2
Fix option 3

4.3.3 Your Turn

Choose the option that works best for you to modify the code of understanding_t1 above
that didn’t work/ gave you an error message. Once you do that, you should be able to calculate
the mean Understanding Score per participant. Store the average scores in a variable called
 Time1_Understanding_OS . If you need help, refer to the hint below or use HW 3, Activity 4 as
guidance.

Hint:
Finally, let’s compute mean and standard deviations across the whole sample for
 Time1_Understanding_OS . You can look back at the previous HWs for examples of thus.

understanding_t1 <- understanding_t1 %>%

 mutate(Responses_corrected = case_match(Responses, # column of the values to reco

 "Not at all confident" ~ 1, # values to r

 "Entirely confident" ~ 7,

 .default = Responses # all other values t

))

4.3.4 Write it up

Add a level 2 heading “Open Science Understanding Scores at Time 1” and report the mean and
standard deviation scores across the sample.

4.4 Activity 4: Survey of Attitudes Towards
Statistics (SATS-28)

The main goal is to compute the mean SATS-28 score for each of the 4 subscales per participant
for time point 1. Looking at the SATS data at time point 1, you determine that

individual item columns are numeric, and

according to the codebook, there are some reverse-coded items in this questionnaire.

Additionally, we are looking to compute the means for the 4 different subscales of the SAT-
28 which are Affect, CognitiveCompetence, Value, and Difficulty.

This scenario is slightly more tricky than the previous ones due to the reverse-coding and the 4
subscales. So, let’s tackle this step by step again:

Step 1: Select the relevant columns Code , and every SATS28 column from time point 1
(e.g., from SATS28_1_Affect_Time1 to SATS28_28_Difficulty_Time1) and store them in
an object called sats_t1

Step 2: Pivot the data from wide format to long format using pivot_longer() so we can
recode the labels into values (step 3) and calculate the average score (in step 4) more easily

Step 3: We need to know which items belong to which subscale - fortunately, we have that
information in the variable name and can use the separate() function to access it.

Step 4: We need to know which items are reverse-coded and then reverse-score them -
unfortunately, the info is only in the codebook and we need to find a work-around.
 case_when() can help identify and re-score the reverse-coded items.

Step 5: Calculate the average SATS score per participant and subscale using group_by()
and summarise()

Step 6: use pivot_wider() to spread out the dataframe into wide format and rename()
to tidy up the column names

4.4.1 Steps 1 and 2: select and pivot

The selecting and pivoting are exactly the same way as we already practiced in the other 2
questionnaires. Apply them here to this questionnaire.

4.4.2 Step 3: separate Subscale information

If you look at the Items column more closely, you can see that there is information on the
 Questionnaire , the Item_number , the Subscale , and the Timepoint the data was
collected at.

We can separate the information into separate columns using the separate() function. The
function’s first argument is the column to separate, then define into which columns you want
the original column to split up, and lastly, define the separator sep (here an underscore). For
our example, we would write:

However, we don’t need all of those columns, so we could just drop the ones we are not
interested in by replacing them with NA .

We might also add an extra argument of convert = TRUE to have numeric columns (i.e.,
 Item_number) converted to numeric as opposed to keeping them as characters. Saves us
typing a few quotation marks later in Step 4.

separate(Items, into = c("SATS", "Item_number", "Subscale", "Time"), sep = "_")

separate(Items, into = c(NA, "Item_number", "Subscale", NA), sep = "_")

sats_t1 <- sats_t1 %>%

 # Step 3

 separate(Items, into = c(NA, "Item_number", "Subscale", NA), sep = "_", convert =

4.4.3 Step 4: identify reverse-coded items and then correct
them

We can use case_when() within the mutate() function here to create a new column FW_RV
that stores information on whether the item is a reverse-coded item or not.

 case_when() works similarly to case_match() , however case_match() only allows us to
“recode” values (i.e., replace one value with another), whereas case_when() is more flexible. It
allows us to use conditional statements on the left side of the tilde which is useful when you
want to change only some of the data based on specific conditions.

Looking at the codebook, it seems that items 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 19, 20, 21, 23, 25,
26, 27, and 28 are reverse-coded. The rest are forward-coded.

We want to tell R now, that

if the Item_number is any of those numbers listed above, R should write “Reverse” into the
new column FW_RV we are creating. Since we have a few possible matches for
 Item_number , we need the Boolean expression %in% rather than == .

if Item_number is none of those numbers, then we would like the word “Forward” in the
 FW_RV column to appear. We can achieve that by specifying a .default argument again,
but this time we want a “word” rather than a value from another column.

sats_t1 <- sats_t1 %>%

 mutate(FW_RV = case_when(

 Item_number %in% c(2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 19, 20, 21, 23, 25, 26,

 .default = "Forward"

))

Moving on to correcting the scores: Once again, we can use case_when () within the
 mutate() function to create another conditional statement. This time, the condition is:

if FW_RV column has a value of “Reverse” then we would like to turn all 1 into 7, 2 into 6,
etc.

if FW_RV column has a value of “Forward” then we would like to keep the score from the
 Response column

There is a quick way and a not-so-quick way to achieve the actual reverse-coding.

4.4.3.1 Option 1 (quick)

The easiest way to reverse-code scores is to take the maximum value of the scale, add 1 unit,
and subtract the original value. For example, on a 5-point Likert scale, it would be 6 minus the
original rating; for a 7-point Likert scale, 8 minus the original rating, etc.

Here we are using a Boolean expression to check if the string “Reverse” is present in the
 FW_RV column. If this condition is TRUE , the value in the new column we’re creating,
 Scores_corrected , will be calculated as 8 minus the value from the Response column. If the
condition is FALSE (handled by the .default argument), the original values from the Response
column will be retained.

sats_t1 <- sats_t1 %>%

 mutate(Scores_corrected = case_when(

 FW_RV == "Reverse" ~ 8-Response,

 .default = Response

))

4.4.3.2 Option 2 (not so quick)

This involves using two conditional statements.

As stated above, the longer approach involves using two conditional statements. The first
condition checks if the value in the FW_RV column is “Reverse”, while the second condition
checks if the value in the Response column equals a specific number. When both conditions
are met, the corresponding value on the right side of the tilde is placed in the newly created
 Scores_corrected_v2 column.

For example, line 3 would read: if the value in the FW_RV column is “Reverse” AND the value in
the Response column is 1, then assign a value of 7 to the Scores_corrected_v2 column.

sats_t1 <- sats_t1 %>%

 mutate(Scores_corrected_v2 = case_when(

 FW_RV == "Reverse" & Response == 1 ~ 7,

 FW_RV == "Reverse" & Response == 2 ~ 6,

 FW_RV == "Reverse" & Response == 3 ~ 5,

 # no need to recode 4 as 4

 FW_RV == "Reverse" & Response == 5 ~ 3,

 FW_RV == "Reverse" & Response == 6 ~ 2,

 FW_RV == "Reverse" & Response == 7 ~ 1,

 .default = Response

))

As you can see now in sats_t1 , both columns Scores_corrected and
 Scores_corrected_v2 are identical.

4.4.3.3 Check the reverse-coding output

One way to check whether our reverse-coding worked is by examining the distinct values
in the original Response column and comparing them with the Scores_corrected . We should
also retain the FW_RV column to observe how the reverse-coding applied.

To see the patterns more clearly, we can use arrange() to sort the values in a meaningful
order. Remember, the default sorting order is ascending, so if you want to sort values in
descending order, you’ll need to wrap your variable in the desc() function.

check_coding <- sats_t1 %>%

 distinct(FW_RV, Response, Scores_corrected) %>%

 arrange(desc(FW_RV), Response)

4.4.4 Step 5: Calculate mean scores

Now that we know everything worked out as intended, we can calculate the mean scores of
each subscale for each participant in sats_t1 .

Hint

4.4.5 Step 6: Transform data back to wide format

The final step is to transform the data back into wide format, ensuring that each subscale has its
own column. This will make it easier to join the data objects later on. In pivot_wider() , the
first argument, names_from , specifies the column you want to use for your new column
headings. The second argument, values_from , tells R which column should provide the cell
values.

We should also rename the column names to match those in the codebook. Conveniently, we
can use a function called rename() that works exactly like select() (following the pattern
 new_name = old_name), but it keeps all other column names the same rather than reducing the
number of columns.

4.4.6 Write it up

Compute the mean score and the standard deviation across the sample for each subscale. Add
a level 2 heading “SATS-28 Scores at Time 1” and report the results.

4.5 Activity 5: Join everything together with ???
_join()

Time to join all the relevant data files into a single dataframe, which will be used in the next
chapters on data visualization. There are four ways to join data: inner_join() , left_join() ,
 right_join() , and full_join() . Each function behaves differently in terms of what
information is retained from the two data objects. Here is a quick overview:

sats_t1 <- sats_t1 %>%

 pivot_wider(names_from = Subscale, values_from = mean_score) %>%

 rename(SATS28_Affect_Time1_mean = Affect,

 SATS28_CognitiveCompetence_Time1_mean = CognitiveCompetence,

 SATS28_Value_Time1_mean = Value,

 SATS28_Difficulty_Time1_mean = Difficulty)

 inner_join() returns only the rows where the values in the column specified in the by =
statement match in both tables.

 left_join() retains the complete first (left) table and adds values from the second (right)
table that have matching values in the column specified in the by = statement. Rows in
the left table with no match in the right table will have missing values (NA) in the new
columns.

 right_join() retains the complete second (right) table and adds values from the first (left)
table that have matching values in the column specified in the by = statement. Rows in
the right table with no match in the left table will have missing values (NA) in the new
columns.

 full_join() returns all rows and all columns from both tables. NA values fill unmatched
rows.

From our original data_prp , we need to select demographics data and all summarised
questionnaire data from time point 2. Next, we will join this with all other aggregated datasets
from time point 1 which are currently stored in separate data objects in the Global
Environment .

While you may be familiar with inner_join() from last year, for this task, we want to retain all
data from all the data objects. Therefore, we will use full_join() . Keep in mind, you can only
join two data objects at a time, so the upcoming code chunk will involve a fair bit of piping and
joining.

Note: Since I (Gaby) like my columns arranged in a meaningful way, I will use select() at the
end to order them better.

data_prp_final <- data_prp %>%

 select(Code:Plan_prereg, Pre_reg_group:Time2_Understanding_OS) %>%

 full_join(qrp_t1) %>%

 full_join(understanding_t1) %>%

 full_join(sats_t1) %>%

 select(Code:Plan_prereg, Pre_reg_group, SATS28_Affect_Time1_mean, SATS28_Cognitiv

4.6 Activity 6: Knit and export

Knit the .Rmd file to ensure everything runs as expected. Once it does, export the data object
 data_prp_final as a csv. Name it something meaningful, something like
 data_prp_wrangled.csv .

To avoid having to repeat the same steps in future, it’s a good idea to save the data objects
you’ve created today as csv files. You can do this by using the write_csv() function from the
 readr package. The csv files will appear in your project folder.

The basic syntax is:

Now, let’s export the object data_prp_final .

I like to name my files with a date and a “slug” so that they sort in order and are easily read.
However, feel free to choose a name that makes sense to you.

4.7 Check for completeness

For this HW, upload your R notebook (.Rmd file), and your Preview html file (.nb.html). Both
should include:

Code chunks that load the tidyverse packages, read in the data, and inspect it.
Your code that computes the OSP understanding and SATS-28 scores, and your sentences
reporting them.
Any notes for yourself about things you figured out along the way

All code in your R Notebook should run successfully.

write_csv(data_object, "filename.csv")

write_csv(data_prp_final, "2025-01-13_data_prp_wrangled.csv")

