
Research Report 2 - Sample Code and
Notes
Professor Noyce
2025-09-10

Model
Finding a target in a visual scene requires some degree of search time, the time cost of examining each item in
the display. The search time varies depending on the properties of the stimuli, and the total response time
depends on the search time, the number of items in the display, and some time cost of recognizing the target and
making a click response. And, of course, an error term.

We can write this model as

where the critical thing to estimate is , the time it takes to check each additional distractor. Notice that this
has the classic structure of a linear regression equation .

In order to compare the  of the red distractors and the black distractors, we could fit two separate models
and compare the two coefficients. That is,

and then we could compare the two fitted  terms to understand how they differ.

This is a good start, but there is a critical problem with it. Because we are fitting two models independently, we
are allowing every parameter to vary between the two models. Not just the  coefficient, but the 
constant, and also the subject-by-subject  are allowed to be different between our models. This is a problem for
two reasons. First, this gives us six free parameters, leading to possible overfitting of our model. Second, we
don’t have a good theoretical basis for expecting the time it takes to make a motor response, or the subject-by-
subject variability in speed, to be different between the two distractor conditions. Instead, we want a model that
constrains these parameters to be fixed for both colors.

We need to create a single linear model that includes both the  term as well as terms capturing the main
effect of condition, as well as any interaction between condition and search time.

Our one-color model already has a term for main effect of number of items:

= ( ∗ ) + + 𝜖𝑇response 𝑇search
𝑁(items)

2
𝑇motor

𝑇search
𝑌 = ( ∗ ) +𝛽1 𝑥1 𝛽0

𝑇search

Red trials only:

Black trials only:

= ( ∗ ) + + 𝜖𝑇response 𝑇search
𝑁(items)

2
𝑇motor

= ( ∗ ) + + 𝜖𝑇response 𝑇search
𝑁(items)

2
𝑇motor

𝑇search

𝑇search 𝑇motor
𝜖

𝑁(items)
2

( ∗ )𝑇search_n_items
𝑁(items)

2



We’ll also add a term for the main effect of condition (See the ANOVA hw for review of dummy coding and
categorical predictors.):

Finally, we need to allow the two predictors to interact. We want to see whether letting the search time per item
differ between the two conditions improves the fit of the model.

This last term accommodates a slope shift between the reference level of the condition variable and the other
level. Our final model to fit is:

Get organized
Create a new directory a new R project for this lab. Load any necessary packages.

library(tidyverse) # tidy data
library(here) # easier file management
here() # check that the working dir is the project dir

## [1] "/Users/anoyce/Documents/2_Areas/Teaching/Cognitive RM 85-310 f25/lab-2"

library(performance) # model checks

Load data file and clean it up
Take a peek at the raw data from Gorilla, either by opening the .csv file in a spreadsheet application, or by loading
it into R.

NOTE: this sample code uses the dataset from a prior semester, your numbers should look different from my
numbers!

datafile <- here("1-data", "data_exp_207534-v1_task-ljfs.csv") # make sure to set your d
atafile name appropriately!

raw_data <- read.csv(datafile)

# head, glimpse, or summarize are all useful. Or you can look at it directly in RStudio!

( ∗ condition)𝑇search_condition

( ∗ ∗ condition)𝑇search_n:condition
𝑁(items)

2

=𝑇response ( ∗ ) +𝑇search_n_items
𝑁(items)

2
( ∗ condition) +𝑇search_condition

( ∗ ∗ condition) +𝑇search_n:condition
𝑁(items)

2
+ 𝜖𝑇motor



Select the relevant columns
This dataframe has columns for every single thing we might possibly want from the online experiment. However,
for our analysis, we only need the model terms above.

Individual participant ID codes: Participant.Private.ID

Reaction times on each trial: Reaction.Time

Information about distractor colors on each trial: Spreadsheet..distractor_color

Information about the number of distractors on each trial: Spreadsheet..Distractor.count

Sometimes platforms like Gorilla change the name of these columns; if these specific column names don’t work,
look at your data file and figure out what needs to change.

Because Gorilla creates a spreadsheet line for everything that happened in the experiment, we’re going to want a
few more columns to let us filter for only rows that actually include a trial response:

Trial number (mostly for a sanity check): Trial.Number

Whether the event was a response click or something else (like a fixation timeout): Response.Type  or
Component.Name  both will work for this.

We’ll use select()  (just like in the data wrangling hw) to extract just those columns. Below, I specified the first
two variables; fill in the others.

data_selected <- raw_data %>% 
  
  select(Participant.Private.ID, 
         Reaction.Time,
         
         # Fill in the rest of the variables yourself

         )

Filter the relevant rows
Looking at the data, we see that we have multiple rows for each trial number! One of them has Response.Type
“continue” (and Component.Name  “Fixation Timing”); the other has Response.Type  “response” (and
Component.Name  “Click Response”). We want to filter()  for only the “response” / “Click Response” rows.

After running this block, check that you have one line of data per trial number per participant ID.

data_filtered <- data_selected %>%
  
  filter(____ == "_____") # remember that filter() uses 'variable-name = "value"' syntax

Rename variables (for quality of life)
We will be happier if we rename()  these variables to be something less annoying to type out a zillion times.
Rename’s syntax is very simple: newname = oldname.



data_renamed <- data_filtered %>%
  
  rename(id = Participant.Private.ID,
         # fill in any others you'd like
  ) 

Transform distractor count to items searched
In a serial search process, in order to find the target, you have to look at 50% of the items on the screen on
average. (Some trials, you will find the target very early; others you will find it very late. But it works out to half, on
average.) The number of items on the screen is the number of distractors plus the target. We will use mutate()
to create a new variable called items_searched .

data_new_var <- data_renamed %>%
  
  mutate(items_searched = (___ + 1) / 2 # newvariable = formula, fill in the column with 
the count of distractors
         ) 

Set factors
Finally, we want to tell R that the participant ID and distractor color are categorical variables, aka factors. Model
interpretation will be easier later if we set the first level of distractor color to be “Red” (rather than R’s default of
setting levels in alphabetical order).

data <- data_new_var %>%
  
  # note that if you renamed this above, you'll need to change the column name here too.
  mutate(participant_id = as.factor(participant_id)
    Spreadsheet..distractor_color = as.factor(Spreadsheet..distractor_color),
         Spreadsheet..distractor_color = fct_relevel(Spreadsheet..distractor_color, "Re
d")
         )

In real life, I’d combine all of these steps into a single pipe (and do them in a slightly different order):

1



data <- raw_data %>% 
  
  filter(___ == "____") %>%
  
  rename(id = Participant.Private.ID,
         # any other renaming
  ) %>%
  
  select(id, # Select only model-relevant columns
         # also RT, distractor count, distractor color
         ) %>%
  
  # Specify factors
  mutate(participant_id = as.factor(participant_id),
         Spreadsheet..distractor_color = as.factor(Spreadsheet..distractor_color),
         Spreadsheet..distractor_color = fct_relevel(Spreadsheet..distractor_color,"Re
d"),
         items_searched = (Spreadsheet..Distractor.count + 1) / 2
  )

Initial data visualization
We always always always want to look at our data first thing. Let’s make a quick histogram for each condition.
Remember, aes  maps data dimensions onto visualization dimensions. We want to set the reaction time on the X
axis, and use facet_grid  to break up the results by different values of distractor count and color.

ggplot(data=data, aes(x = _____)) + # fill in your RT variable
  facet_grid(_____ ~ ______) + # fill in your items_searched and distractor_color column 
names
  geom_histogram()



You might notice:

RT distributions are often skewed, with long positive tails from a few slow trials.

Most trials are under 2000 ms to respond, but a few are longer, and 1 or 2 may be much longer.

Those slower trials tend to be when the distractors are Black, and the number of distractors is large.

Summarize across trials for each participant
Right now, each trial for each participant is a single datapoint. However, we want to summarize across trials and
get each participant’s median RT in each condition.

(We’ll call this clean_data since it’s the point at which we can start running our analyses.)

clean_data <- data %>%
  
  group_by(___, # participant ID
           ___, # distractor color
           ___  # items searched
           ) %>%
  
  summarize(median_rt = median(___)) %>% # reaction time
  
  ungroup()



Our clean_data  data frame should have 1/8 as many rows as data , or 1/16 as many as our initial raw_data
input. Now we have one estimate per subject per condition, and we can do some analyses.

Interim data visualization
Let’s look at the clean_data  histograms. We can use a code snippet very similar to the above, with 2 changes in
the ggplot()  call: (1) we need to use our updated data with data = clean_data , and (2) we need to use our
updated RT variable with aes(x = median_rt) .

Hopefully, any wild outliers have been mitigated by taking the median, and these data look plausible. Take a
minute to think about our upcoming analysis. We’re hoping to estimate the search time, the amount that the RT
changes with the number of distractors. How much does the search time appear to change with red distractors?
With black distractors? Do you anticipate observing the interaction we hypothesized?

Descriptive stats
To get the mean and standard deviations that we would want for a Results section, we first group_by()
distractor color (our categorical predictor), then summarize()  with the mean, standard deviation, and n.



descriptives <- clean_data %>% 
  
  group_by(____ # distractor color
           ) %>%
  
  summarize(mean_rt = mean(median_rt),
            sd_rt = sd(median_rt), 
            n = n()
            ) %>%
  
  ungroup()

# Print out the resulting descriptive stats table
descriptives

distractor_color
<fct>

mean_rt
<dbl>

sd_rt
<dbl>

n
<int>

Red 764.9947 116.1579 28

Black 926.9714 224.2365 28

2 rows

Fitting linear models
Before we fit the full model, we’ll step through the componenets individually. Not all of these may make it into
your final research report, but they are useful to help understand the data.

Simplified: one-way effect of color (t-test)
To ask whether, overall, Red and Black distractors lead to different reaction times, we need to first get the average
reaction time for each participant and each color. We’ll use group_by()  and summarize() .

clean_data_colortest <- clean_data %>%
  
  group_by(___, # keep participant ID
           ___. # keep color
           ) %>%
  
  summarize(mean_rt = mean(___)) # the RT column in your clean_data

Here’s a look at the summarized data.



Now we run the t-test, just like we did with the data HW.

t.test(formula = ___ ~ ___, # outcome ~ predictor
       data = clean_data_colortest
       )

## 
##  Welch Two Sample t-test
## 
## data:  mean_rt by distractor_color
## t = -3.5136, df = 11.739, p-value = 0.004412
## alternative hypothesis: true difference in means between group Red and group Black is 
not equal to 0
## 95 percent confidence interval:
##  -262.66802  -61.28548
## sample estimates:
##   mean in group Red mean in group Black 
##            764.9947            926.9714

Make sure you understand this output! Is there a significant difference between colors? Which one has faster
reaction times? How much faster? (Looking at the graph above can help with interpreting the direction of the
effect.)



Simplified: one-way effect of item count
(regression)
To ask whether, overall, the number of distractors changes the reaction times, we need to first get the average
reaction time for each participant and each distractor count. We’ll again use group_by()  and summarize() .

clean_data_counttest <- clean_data %>%
  
  group_by(___, # keep participant id
           ___  # keep search count
           ) %>%
  
  summarize(mean_rt = mean(___) # take the mean reaction time
            ) %>%
  
  ungroup()

Again, here’s a quick look at the summarized data. (GGplot can show a linear fit directly on the plot, that’s handy!)

To ask R for the stats on that fitted linear model, we use the same syntax as was in the reading:



model_count <- lm(data = clean_data_counttest,
                     formula = ___ ~ ___ # output variable ~ predictor variable
                            )

summary(model_count)

## 
## Call:
## lm(formula = mean_rt ~ items_searched, data = clean_data_counttest)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -250.792  -88.542   -5.787   62.637  312.808 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     735.849     45.773  16.076 5.04e-15 ***
## items_searched   25.914      9.109   2.845  0.00855 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 129.2 on 26 degrees of freedom
## Multiple R-squared:  0.2374, Adjusted R-squared:  0.208 
## F-statistic: 8.093 on 1 and 26 DF,  p-value: 0.008549

Make sure you understand this output! What is the effect of the items searched (in ms per additional item)? Is it
significant? What does the intercept represent? (Looking at the graph above can help with interpreting these
effects.)

Simplified: simple one-way effects of item count
(regression)
So far, we’ve seen that color and distractor count both affect the reaction time. Our final goal is to model them
simultaneously, but in order to help you make sense of that, we will first look at the model with JUST red, or JUST
black trials.

This means the model call will look a lot like the one above, but instead of feeding it the average reaction time
across colors, we will feed it the single reaction time from one color.

This is a simple main effect, the effect of one variable at a single level of the other variable(s).

Simple effect of item count at Red level
We’ll use filter()  to get just the Red trials.



clean_data_onlyred <- clean_data %>% 
  filter(___ == "___") # variable-name == "value"

model_onlyred <- lm(data = clean_data_onlyred,
                    formula = ___ ~ ___ # outcome ~ predictor
                    )

summary(model_onlyred)

## 
## Call:
## lm(formula = median_rt ~ items_searched, data = clean_data_onlyred)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -207.92  -92.76   14.70   79.86  225.73 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     752.195     41.823  17.985 3.44e-16 ***
## items_searched    3.012      8.323   0.362     0.72    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 118.1 on 26 degrees of freedom
## Multiple R-squared:  0.005011,   Adjusted R-squared:  -0.03326 
## F-statistic: 0.1309 on 1 and 26 DF,  p-value: 0.7204

Remember back to our model specification above:

Make sure you understand how the values in the Coefficients table map to the  and  terms. What is
the estimated search time, and the estimated motor response time?

Simple effect of item count at Black level
Same thing, but for just the black trials.

clean_data_onlyblack <- clean_data %>% 
  filter(___ == "___") # variable-name == "value"

model_onlyblack <- lm(data = clean_data_onlyblack,
                    formula = ___ ~ ___ # outcome ~ predictor
                    )

summary(model_onlyblack)

= ( ∗ ) + + 𝜖𝑇response 𝑇search
𝑁(items)

2
𝑇motor

𝑇search 𝑇motor



## 
## Call:
## lm(formula = median_rt ~ items_searched, data = clean_data_onlyblack)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -358.79 -101.68  -37.75  106.33  488.66 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      719.50      65.09  11.054 2.53e-11 ***
## items_searched    48.82      12.95   3.768 0.000853 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 183.8 on 26 degrees of freedom
## Multiple R-squared:  0.3532, Adjusted R-squared:  0.3284 
## F-statistic:  14.2 on 1 and 26 DF,  p-value: 0.0008527

Looking between the “onlyred” and “onlyblack” models, is the estimate for  similar between them? How
about the estimate for ?

Full model
Remember our model specification is

Data visualization
As we did above, let’s first look at these data using ggplot’s built-in linear model tools, so that we know what to
expect.

# Remember that you will likely have different column names if you try this yourself!
ggplot(data = clean_data, aes(x = items_searched, y = median_rt, color = distractor_colo
r)) +
  geom_point() +
  geom_smooth(method = "lm")

## `geom_smooth()` using formula = 'y ~ x'

𝑇motor
𝑇search

=𝑇response ( ∗ ) +𝑇search_n_items
𝑁(items)

2
( ∗ condition) +𝑇search_condition

( ∗ ∗ condition) +𝑇search_n:condition
𝑁(items)

2
+ 𝜖𝑇motor



Model fitting
We’ve got a continuous predictor (our items_searched  variable) and a categorical predictor (our
distractor_color  variable).

CAUTION: By default, R codes categorical predictors by what’s called treatment coding. One level is set to
be the baseline (way back at the top, we set Red as the baseline), and the model reports simple main effects of
the other predictors at that level. We need to pay attention to detail when interpreting the output.

model_full <- lm(data = clean_data,
                 # formula = outcome ~ predictor1 + predictor2 + predictor1:predictor2
                 formula =  _____
)

summary(model_full)



Interpretting output
## 
## Call:
## lm(formula = median_rt ~ distractor_color + items_searched + 
##     distractor_color:items_searched, data = clean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -358.79  -94.33   -9.58   90.44  488.66 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           752.195     54.709  13.749  < 2e-16 ***
## distractor_colorBlack                 -32.691     77.371  -0.423  0.67439    
## items_searched                          3.012     10.888   0.277  0.78317    
## distractor_colorBlack:items_searched   45.804     15.397   2.975  0.00444 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 154.5 on 52 degrees of freedom
## Multiple R-squared:  0.4062, Adjusted R-squared:  0.372 
## F-statistic: 11.86 on 3 and 52 DF,  p-value: 4.964e-06

There’s a lot going on in this output! By default, R reports these fits as the values when all other predictors are set
to zero. Above, with only one predictor variable, that wasn’t too bad, but here we will need to be careful.

(Intercept)  gives the estimated response time when both predictors are “zero” (that is, our categorical
predictor is at its baseline value, in this case Red, and the items searched is also 0).

distractor_colorBlack  gives the estimated increase in response time when the color is Black and number of
items searched is 0. That is, it’s the difference in intercepts between the Red and Back distractors.

items_searched  gives the estimated search time per item when distractor_color  is baseline (Red).

distractor_colorBlack:items_searched  gives the estimated change in search time per item when the
distractor_color becomes Black.

That is, when distractors are Red, the estimated search cost is in the items_searched  row, and when
distractors are Black, the estimated search cost is the SUM of the items_searched  row and the
distractor_colorBlack:items_searched  row.

These values should be very close to those that we saw when fitting the Red and Black models separately, above.

Constrained model
Wait a second. The full model allows for different intercepts between the Red and the Black colors, and the
intercept corresponds to the motor response time, and above we decided to constrain the intercept to be
identical between the two colors. That is, we need to remove one term from the model:



model_constrained <- lm(data = clean_data,
                        # formula = output ~ predictor1 + predictor1:predictor2 
                 formula =  ____
)

summary(model_constrained)

## 
## Call:
## lm(formula = median_rt ~ items_searched + distractor_color:items_searched, 
##     data = clean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -351.75  -96.42   -9.84   89.42  495.70 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           735.849     38.384  19.171  < 2e-16 ***
## items_searched                          5.763      8.658   0.666    0.509    
## items_searched:distractor_colorBlack   40.302      8.151   4.944 8.07e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 153.3 on 53 degrees of freedom
## Multiple R-squared:  0.4042, Adjusted R-squared:  0.3817 
## F-statistic: 17.98 on 2 and 53 DF,  p-value: 1.097e-06

In this output table:

(Intercept)  again gives the estimated response time when items_searched  is zero, for any
distractor_color .

items_searched  again gives the estimated search time per item when distractor_color  is “zero” (Red).

distractor_colorBlack:items_searched  again gives the estimated change in search time per item when the
distractor_color becomes Black.

By looking at the p value associated with each line, we can see whether this effect in our data is statistically
significant.

Model comparisons
By design, model_constrained  is a better fit to our theoretical specification of this system. But is it a better fit to
the data? Or are we throwing out an important source of variability when we drop that predictor? To answer this
question, there are formal model comparison tools that we will explore in our next lab. For now, we’ll just look at
the  and adjusted  values from the model output.

The bottom of each models summary includes “Multiple R-squared,” which is an estimate of the proportion of the
variance in the dataset that is explained by the model. It also gives “Adjusted R-squared,” which scales that value
down somewhat for each free parameter in the model. This helps penalize models that have a high potential for
overfitting.

𝑅2 𝑅2



A quick and dirty approach to comparing models is to see which model has a higher Adjusted R-squared value.
That model is accounting for more of the variance per fitted free parameter.

1. Why? Because I have a strong belief that the fitted slope for Red trials will be flatter, less steep, than the
fitted slope for Black trials, and most humans have an easier time thinking about “adding steepness” than
“subtracting steepness”.↩︎


